Given: 𝑓(π‘₯) = π‘Žπ‘₯^3 + 𝑏π‘₯^2 βˆ’ 3 and 𝑓"(βˆ’2) = 0. If it is further given that the point (βˆ’3; 6) lies on the graph of 𝑓. Show that π‘Ž = 1/3 and 𝑏 = 2.

We start off by finding the first derivative of equation f(x) = ax3 + bx2 - 3: f'(x) = 3ax2 + 2bx. We now take the second derivative of equation f, because we have been told that f"(-2) = 0: f"(x) = 6ax + 2b (1). We know that with an x value of -2, equation (1) is equal to 0: f"(-2) = 6a(-2) + 2b = 0-12a +2b = 0 (2). This equation will be used later to find the final answer. We also know that the pointΒ (βˆ’3; 6) lies on the graph of 𝑓. Therefore, for an x value of -3, f(x) equals 6: f(-3) = a(-3)2 + b(-3)2 - 3 = 6-27a + 9b = 9 (3). We then solve equations (2) and (3) simultaneously, as we have two unknowns and two equations, and reach the following answer: a = 1/3 ; b = 2. This question would be worth a total of 6 points.

Answered by Neil L. β€’ Maths tutor

2200 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers β–Έ

write log2(5) +log2​​​​​​​(3) in its simplest form


Benjamin has a 0.7 chance of passing his driving test the first time and a 0.85 chance of passing the second time. What is the probability of his passing on either the first or second try?


How do you work out the circumference and area of a circle?


A,B,C and D are points on a circle. ABCD is a square of side 7 cm. Work out the total area of the shaded regions. Give your answer correct to the nearest whole number.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

Β© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy|Cookie Preferences
Cookie Preferences