Given: 𝑓(π‘₯) = π‘Žπ‘₯^3 + 𝑏π‘₯^2 βˆ’ 3 and 𝑓"(βˆ’2) = 0. If it is further given that the point (βˆ’3; 6) lies on the graph of 𝑓. Show that π‘Ž = 1/3 and 𝑏 = 2.

We start off by finding the first derivative of equation f(x) = ax3 + bx2 - 3: f'(x) = 3ax2 + 2bx. We now take the second derivative of equation f, because we have been told that f"(-2) = 0: f"(x) = 6ax + 2b (1). We know that with an x value of -2, equation (1) is equal to 0: f"(-2) = 6a(-2) + 2b = 0-12a +2b = 0 (2). This equation will be used later to find the final answer. We also know that the pointΒ (βˆ’3; 6) lies on the graph of 𝑓. Therefore, for an x value of -3, f(x) equals 6: f(-3) = a(-3)2 + b(-3)2 - 3 = 6-27a + 9b = 9 (3). We then solve equations (2) and (3) simultaneously, as we have two unknowns and two equations, and reach the following answer: a = 1/3 ; b = 2. This question would be worth a total of 6 points.

NL
Answered by Neil L. β€’ Maths tutor

2740 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers β–Έ

Work out 3 and 1/2 divided by 2 and 4/5


The diagram shows a prism. The cross-section of the prism is an isosceles triangle. The lengths of the sides of the triangle are 13 cm, 13 cm and 10 cm. The perpendicular height of the triangle is 12 cm. The length of the prism is 8 cm. Work out the total


What's the difference between the mean, median and mode?


Find the solutions of the equation x^2 - 2x - 8 =0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

Β© 2025 by IXL Learning