solve the simultaneous equation x^2 + 2y = 9 , y - x = 3

First we need to find a value for x in terms of y , this can be done by rearranging the second equation y - x = 3 to give x = y - 3. This equation is then substituted into the first equation so that everything is in terms of y giving us (y - 3)^2 + 2y = 9. We then multiply out the brackets to give us y^2 - 6y + 9 + 2y = 9 this simplifies to y^2 - 4y = 0. Therefore y = 0 to find the x value we sub this value of y into the second equation to give 0 - x = 3 and solve to find x = -3

SB
Answered by Sara B. Maths tutor

2860 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 4x+y=7 and 3x+2y=9


The are 10 coloured balls in a bag, 4 red, 3 green, 2 orange and 1 yellow. John picks out balls and replaces them one at a time. What is the probability that the first two he picks are red?


The normal price of the pair of shoes is £28. In a sale the price is reduced by 35%. What is the new price of the shoes?


All tickets to the movie theatres cost the same price. Jessica and Thomas pay £84 together. Jessica pays £38.5 for 11 tickets. How many does Thomas Buy?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning