A quadratic curve intersects the axes at (–3, 0), (3, 0) and (0, 18). Work out the equation of the curve

Using the equation y = ax2 + bx + cCreate 3 separate equations:-a(3)2 + b(3) + 18 = 0 -a(-3)2 + b(-3) + 18 = 0
-9a+3b = -18-9a - 3b = -18
add the equations:-9a-9a-3b+3b=-18-18-18a = -36a = 2
Substitute a into equation to find b:
-2(9) - 3b = -18b =0
Therefore,
y = -2x2 + 18

SS
Answered by Stanley S. Maths tutor

8188 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the composite function fg(2)=-26 where f(x)=3x+1 and g(x)=1-5x


Work out 51% of 400


Find the value (8/125)^-2/3


Put the following in order of size, smallest first: 8/sqrt3, sqrt6*sqrt2, sqrt48-sqrt27


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning