Differentiate a^x

  1. Set y=a^x2. Take the natural log of both sides: ln(y)=ln(a^x)3. Using the log rules, simplify: ln(y)=xln(a)4. Differentiate both sides with respect to x: 1/y dy/dx=lna+05. Rearrange: dy/dx=yln(a)6. Using the definition of 'y' set in step 1: dy/dx=a^(x)ln(a)
Answered by Hafsah K. Maths tutor

16420 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 4x / (x^2 + 5). Find dy/dx.


Solve the simultaneous equations, 2x+y-5=0 and x^2-y^2=3


Factorise the following: 5a^3b^5-4ab^2


If z1 = 3+2i, z2= 4-i, z3=1+i, find and simplify the following: a) z1 + z2, b) z2 x z3, c)z2* (complex conugate of z2), d) z2/z3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences