Differentiate a^x

  1. Set y=a^x2. Take the natural log of both sides: ln(y)=ln(a^x)3. Using the log rules, simplify: ln(y)=xln(a)4. Differentiate both sides with respect to x: 1/y dy/dx=lna+05. Rearrange: dy/dx=yln(a)6. Using the definition of 'y' set in step 1: dy/dx=a^(x)ln(a)
Answered by Hafsah K. Maths tutor

15992 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The variables x and y are related by y = 5^x. How do I find the value of x when y is set to 15?


How do you do simple integration?


Find the derivative of f(x) = 2xe^x


Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences