Using the parametric equations x=6*4^t-2 and y=3*(4^(-t))-2, Find the Cartesian equation of the curve in the form xy+ax+by=c

Firstly make t the subject for both equations
(x-7)/6=4^t
(y+2)/3=4^(-t)
Times them together to eliminate t
((x-7)/6)((y+2)/3) = (4^t)*(4^-t)=4^0=1
Rearrange to the form required
(x-7)(x+2)=18
xy-7y+2x-14=18
xy+2x-7y=32

AC
Answered by Anya C. Maths tutor

3213 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A Curve has parametric equation x=2sin(t), y= 1+cos(2t), -pi/2<=t<=pi/2. a) Find dy/dx when t=pi/3. b) Find the Cartesian equation for the curve in form y=f(x), -k<=x<=k. c) Find the range of f(x)


Find the derivative of the function y = (2x + 12)/(1-x)


Integrate ((7e^(x/2))/4) with respect to x within the bounds of x=0 and x=2. (Basic introduction to definite integration)


Find the inverse of the matrix C=(1,2;4,9)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning