Solve the simultaneous equations 5x + y = 21, x - 3y = 9

Method 1 - By Elimination: Firstly, understand that in order to eliminate a variable, the coefficient needs to be the same for the variable in both equations. We can eliminate the x variable by multiplying the second equation by 5. This gives us: 5x-15=45.If we now minus the second equation from the first, the 5x-5x cancels out to give 0 and y-(-15y) gives us 16y. So we now understand that 16y = -24. Once we divide both sides by 16, we get y = -1.5. We then substitute this into the original equation, e.g. 5x+(-1.5)=21 then 5x = 22.5. Upon dividing both sides by 5, we get x = 4.5.
Method 2 - By Substitution: We can reorder the second equation to make x the subject which gives us x = 9 + 3y. This can then be substituted as x in the first equation as such: 5(9+3y)+y=21. Upon expanding the brackets, we get 45+16y=21. We then minus both sides by 45 to move it over to the other side: 16y=-24. Which when simplified gives us -3/2 or -1.5.This can then be substituted for y in one of the equations (I'll pick the first) to give us: 5x - 1.5=21 and so 5x = 22.5. When both sides are divided by 5 we get 4.5 as a value for x.

RV
Answered by Rahil V. Maths tutor

3047 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that the lines y=3x+7 and 2y-6x=8 are parallel (not using a graphical method).


How do you solve the following simultaneous equation?


Why is it that when I am asked to factorise 3x^2-13x-10, I am not able to cancel two of the x's so that the answer is 3x-13-10?


Expand the following expression: (2x+3)(x+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning