(x+2)/(x-3) - (x-1)/(x+3) can be written in the form (ax+b)/(x^2-9). Work out the value of a and the value of b.

Recall that in order to add and subtract fractions, they must have the same denominator. Therefore, we multiply the first fraction by (x+3)/(x+3) and the second fraction by (x-3)/(x-3) to create a common denominator of (x-3)(x+3) (which is equivalent to x2-9). The next step is to expand out and simplify the numerator;(x+2)(x+3) - (x-1)(x-3) = x2+2x+3x+6 -(x2-x-3x+3) = x2+5x+6 -(x2-4x+3) = x2+5x+6-x2+4x-3=9x+3. This leaves us with the fraction as (9x+3)/(x2-9). Our final step is to identify a and b. We can see that a=9 and b=3.

Answered by Hannah P. Maths tutor

4386 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you multiply two brackets with two terms in them? For example (2x-3)(x+4)


There are 10 boys and 20 girls in a class. In a class test, the mean score of the boys is 77. The mean score of the girls is 80. What is the mean score of the whole class?


How do you integrate?


Write down 56 as the product of its prime factors.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences