(x+2)/(x-3) - (x-1)/(x+3) can be written in the form (ax+b)/(x^2-9). Work out the value of a and the value of b.

Recall that in order to add and subtract fractions, they must have the same denominator. Therefore, we multiply the first fraction by (x+3)/(x+3) and the second fraction by (x-3)/(x-3) to create a common denominator of (x-3)(x+3) (which is equivalent to x2-9). The next step is to expand out and simplify the numerator;(x+2)(x+3) - (x-1)(x-3) = x2+2x+3x+6 -(x2-x-3x+3) = x2+5x+6 -(x2-4x+3) = x2+5x+6-x2+4x-3=9x+3. This leaves us with the fraction as (9x+3)/(x2-9). Our final step is to identify a and b. We can see that a=9 and b=3.

HP
Answered by Hannah P. Maths tutor

5108 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If f(x) = 2x+5, g(x) = 8x-7 and f(x)=g(x). Find the value of x. Show your working.


How do I solve simultaneous equations?


How do I solve a quadratic equation like x^2 - 2x - 35 = 0 without using a calculator?


A shop sells bags of crisps in different size packs. There are 18 bags of crisps in a small pack (£4), 20 bags of crisps in a medium pack (£4.99) and 26 bags of crisps in a large pack (£6). Which size pack is the best value for money?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning