(x+2)/(x-3) - (x-1)/(x+3) can be written in the form (ax+b)/(x^2-9). Work out the value of a and the value of b.

Recall that in order to add and subtract fractions, they must have the same denominator. Therefore, we multiply the first fraction by (x+3)/(x+3) and the second fraction by (x-3)/(x-3) to create a common denominator of (x-3)(x+3) (which is equivalent to x2-9). The next step is to expand out and simplify the numerator;(x+2)(x+3) - (x-1)(x-3) = x2+2x+3x+6 -(x2-x-3x+3) = x2+5x+6 -(x2-4x+3) = x2+5x+6-x2+4x-3=9x+3. This leaves us with the fraction as (9x+3)/(x2-9). Our final step is to identify a and b. We can see that a=9 and b=3.

Answered by Hannah P. Maths tutor

4199 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Given the curve y=x^2 +1 and the line y=k, find, using graphical methods only, the value of k for which there is exactly one solution.


Prove that the square of an odd number is always 1 more than a multiple of 4.


Factorise and solve X^2+8X+15=0


Solve the simultaneous equations, make sure to show clear algebraic working: 3x + 5y = 14, 4x + 3y = 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences