Express the complex number (1+i)/(1-i) in the form x+iy

First of all calculate the complex conjugate of the denominator. The complex conjugate of (1-i) is 1+i.Now multiply the given complex number by (1+i)/(1+i), note that we are not modifying the starting number since we are just multiplying by 1. The product is (1+i)^2/(1-(i)^2), that is (1+i)^2/2. Finally just calculate (1+i)^2=1+2i+(i^2)=2i, thus (1+i)/(1-i)=2i/2=i=0+1*i.

Related Further Mathematics A Level answers

All answers ▸

Express cos5x in terms of increasing powers of cosx


How to use the integrating factor?


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


A mass m=1kg, initially at rest and with x=10mm, is connected to a damper with stiffness k=24N/mm and damping constant c=0.2Ns/mm. Given that the differential equation of the system is given by d^2x/dt^2+(dx/dt *c/m)+kx/m=0, find the particular solution.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences