Express the complex number (1+i)/(1-i) in the form x+iy

First of all calculate the complex conjugate of the denominator. The complex conjugate of (1-i) is 1+i.Now multiply the given complex number by (1+i)/(1+i), note that we are not modifying the starting number since we are just multiplying by 1. The product is (1+i)^2/(1-(i)^2), that is (1+i)^2/2. Finally just calculate (1+i)^2=1+2i+(i^2)=2i, thus (1+i)/(1-i)=2i/2=i=0+1*i.

Related Further Mathematics A Level answers

All answers ▸

y = artanh(x/sqrt(1+x^2)) , find dy/dx


Given that z = a + bj, find Re(z/z*) and Im(z/z*).


How can we describe complex numbers ?


Show that G = {1, -1} is a group under multiplication.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences