Express the complex number (1+i)/(1-i) in the form x+iy

First of all calculate the complex conjugate of the denominator. The complex conjugate of (1-i) is 1+i.Now multiply the given complex number by (1+i)/(1+i), note that we are not modifying the starting number since we are just multiplying by 1. The product is (1+i)^2/(1-(i)^2), that is (1+i)^2/2. Finally just calculate (1+i)^2=1+2i+(i^2)=2i, thus (1+i)/(1-i)=2i/2=i=0+1*i.

Related Further Mathematics A Level answers

All answers ▸

Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


Given that f(x)=2sinhx+3coshx, solve the equation f(x)=5 giving your answers exactly.


Find the derivative of the arctangent of x function


What does it mean if two matrices are said to be commutative?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences