Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.

The area of a circle is given by (pi)r2 and the area generated by R can be considered as an infinite number of circular areas.

Thus, we can write the area generated by R as the integral of (pi)(x3)between x=0 and x=4.

The (indefinate) integral is: (pi)6x5

so the area is: (pi)6(45-05)=(pi)6(1024-0)

                                      =6144(pi)

Answered by Stephen B. Maths tutor

4441 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(A) express 4^x in terms of y given that 2^x = y. (B) solve 8(4^x ) – 9(2^x ) + 1 = 0


A curve C is defined by the equation sin3y + 3y*e^(-2x) + 2x^2 = 5, find dy/dx


Given y = 9x + 1/x, find the values of x such that dy/dx=0


How do I solve x^2 > 6 - x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences