Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.

The area of a circle is given by (pi)r2 and the area generated by R can be considered as an infinite number of circular areas.

Thus, we can write the area generated by R as the integral of (pi)(x3)between x=0 and x=4.

The (indefinate) integral is: (pi)6x5

so the area is: (pi)6(45-05)=(pi)6(1024-0)

                                      =6144(pi)

SB
Answered by Stephen B. Maths tutor

5225 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

2 equations intersect each other, y = x + 2 and y = x^2. Find the area of the shaded region between the points of intersection giving your answer to 3 significant figures. (shaded region will be shown)


How to get A and A* in Maths?


integrate from 0 to 2: 2x*sqrt(x+2) dx


Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 9x)^4 giving each term in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning