Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.

The area of a circle is given by (pi)r2 and the area generated by R can be considered as an infinite number of circular areas.

Thus, we can write the area generated by R as the integral of (pi)(x3)between x=0 and x=4.

The (indefinate) integral is: (pi)6x5

so the area is: (pi)6(45-05)=(pi)6(1024-0)

                                      =6144(pi)

Answered by Stephen B. Maths tutor

4841 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=3x^3+x^2+5 at the point (1,9)


Find the integral of 4/(1-x^2) dx:


Differentiate f(x)=(x+sin(2x))^4


(C3 question). Find an expression for all stationary points on the curve y=sin(x)cos(x). How many such points are there and why?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences