Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.

The area of a circle is given by (pi)r2 and the area generated by R can be considered as an infinite number of circular areas.

Thus, we can write the area generated by R as the integral of (pi)(x3)between x=0 and x=4.

The (indefinate) integral is: (pi)6x5

so the area is: (pi)6(45-05)=(pi)6(1024-0)

                                      =6144(pi)

SB
Answered by Stephen B. Maths tutor

5400 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate xsin(2x) by dx between the limits 0 and pi/2.


Find the x coordinate of the stationary points of the curve with equation y = 2x^3 - 0.5x^2 - 2x + 4


How does one find the equation of a line passing through 2 points of a graph?


Express (9x^2 + 43x + 8)/(3+x)(1-x)(2x+1) in partial fractions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning