A car is accelerating at 2 ms^-2 along a horizontal road. It passes a point A with a velocity of 10 ms^-1 and later a point B, where AB = 50m. FInd the velocity of the car as it passes through B.

From the first look, we can see the question states the car is undergoing constant acceleration, thus we know the SUVAT equations are valid. Then reading on, we're required to find the final velocity, v, of the car as it passes B, therefore we must find at least 3 of the 4 other variables of the system (a, u, t and S in addition to v). As we are given a = 2ms^-2, u = 10ms^-1 (the velocity at A) and S = 50m, we can put these values straight into any SUVAT equation containing a, u, v and S. This equation is v^2 = u^2 +2as. Therefore the answer is:
v = sqrt(u^2 + 2as)v = sqrt(10^2 + 2250)v = 10*sqrt(3) = 17.32 ms^-1 to 2 d.p

Answered by Maths tutor

2557 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the x coordinate of the stationary points of the curve with equation y = 2x^3 - 0.5x^2 - 2x + 4


why does log a + log b = log (ab)


How do you know when to integrate by parts?


A child of m1=48 kg, is initially standing at rest on a skateboard. The child jumps off the skateboard moving horizontally with a speed v1=1.2 ms^-1. The skateboard moves with a speed v2=16 ms^-1 in the opposite direction. Find the mass of the skateboard.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences