A car is accelerating at 2 ms^-2 along a horizontal road. It passes a point A with a velocity of 10 ms^-1 and later a point B, where AB = 50m. FInd the velocity of the car as it passes through B.

From the first look, we can see the question states the car is undergoing constant acceleration, thus we know the SUVAT equations are valid. Then reading on, we're required to find the final velocity, v, of the car as it passes B, therefore we must find at least 3 of the 4 other variables of the system (a, u, t and S in addition to v). As we are given a = 2ms^-2, u = 10ms^-1 (the velocity at A) and S = 50m, we can put these values straight into any SUVAT equation containing a, u, v and S. This equation is v^2 = u^2 +2as. Therefore the answer is:
v = sqrt(u^2 + 2as)v = sqrt(10^2 + 2250)v = 10*sqrt(3) = 17.32 ms^-1 to 2 d.p

Related Maths A Level answers

All answers ▸

intergrate xcos(2x) with respect to x


How do you sketch the curve y=(x^2 - 4)(x+3), marking on turning points and values at which it crosses the x axis


Integrate f(x)=lnx


how do i sketch the graph of y=ln(|x|) ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences