Using simultaneous equations find x & y. Equation A: 3x + 2y = 3 -y and Equation B: 5x + 3y = 6 + x

So firstly, it makes it a lot easier if we put all the stuff we don't know on one side, and the numbers on the other. Be careful moving the -y over to the other side. This would give Equation A as 3x + 3y = 3 and Equation B as 4x + 3y = 6 . As you can see in both equations we have a +3y. An easy thing to help with these type of questions is remembering SSS (same signs subtract)- I can show you how this works if you want, or if you think it will complicate it we can stick with remembering SSS. 4x + 3y = 6- 3x + 3y = 3= x = 3If we then substitute that back in to one of the original equations (always pick the easiest one- here equation B looks better as there are no minus signs which could lead to a silly mistake. (5*3) + 3y = (6+3)15 + 3y = 93y = 9-153y = -6y=-2
x = 3 and y = -2 At the end clearly write your 2 answers (just to be sure the examiner can clearly see you are a maths genius!)


Answered by Elke M. Maths tutor

2391 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of a curve is y = (x + 3)^2 + 5. Find the coordinates of the turning point.


Find the points that the graph "y = x^2 -4x -14" touches the x-axis


Express 56 as the product of its prime factors.


A shape consists of a quarter circle (radius r = 4cm) attached to a triangle (side length = 4cm and hypotenuse = 5cm). This shape is surrounded by a square (side length 8cm). If the shape is coloured in, what is the area in the square that is uncoloured?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences