Solve: x^2 – x – 12 = 0

Method 1: Solve by inspection.
Demonstrate that quadratic equations can often be written in the form (x+a)(a+b) = 0. Explain that possible solutions arise as a result of either (x+a) or (x+b) =0. Note that ab = -12 , and a+b = -1 (the coefficient of the x term). Through solving these simultaneous equations or simple inspection we conclude that:a = -4, b = +3. We then substitute these values into our original form: (x+a)(a+b) = 0 , concluding that x must equal 4, -3.
Method 2: Use the quadratic formula (-b+-(√b^2-4ac) ) / 2a.
Substituting a = 1, b = -1, c= -12 we arrive at the answer x = 4,-3.

Answered by Nikesh A. Maths tutor

2504 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is Pythagorus Theorem ? Find the length of BC if given a right angle triangle ABC where AB is 8cm and the length of the hypotenuse AC is 10cm ?


2 sides of a right-angled triangle are 5cm and 6cm. Calculate the length of the hypotenuse.


If a and b are the roots of the quadric polynomial 2x^2+6x+7 what are a+b and ab?


Bob lives 2km away from Alice and the school is 1km away from Bob. Alice sets off to meet Bob at 8am and she meets him at 8:15 and they carry on walking at the same pace. School starts at 8:20. Do they get to school on time? How early/late are they?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences