Solve: x^2 – x – 12 = 0

Method 1: Solve by inspection.
Demonstrate that quadratic equations can often be written in the form (x+a)(a+b) = 0. Explain that possible solutions arise as a result of either (x+a) or (x+b) =0. Note that ab = -12 , and a+b = -1 (the coefficient of the x term). Through solving these simultaneous equations or simple inspection we conclude that:a = -4, b = +3. We then substitute these values into our original form: (x+a)(a+b) = 0 , concluding that x must equal 4, -3.
Method 2: Use the quadratic formula (-b+-(√b^2-4ac) ) / 2a.
Substituting a = 1, b = -1, c= -12 we arrive at the answer x = 4,-3.

Answered by Nikesh A. Maths tutor

2536 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve: 6x + 3 = 3x + 9


Part 1 of a test has 60 marks, Part 2 has 100 marks. James scores 75% on part 1 and 48% on part 2. To pass the full test, he needs 60% of the total marks, does he pass?


Solve the simultaneous equations. 2x + y = 18, x−y=6


If 3(x+2) = 4, what is x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences