Integrate xsin(x) with respect to x

For this use integration by parts, letting the integral = T. Let u = x and dv/dx = sin(x). Differentiating u with respect to x gives du/dx = 1. Integrating dv/dx with respect to x gives v = - cos(x). Now, using the integration by parts formula, we get T = - xcos(x) - integral of (-cos(x)). Then, integrating this gives T = sin(x) - xcos(x) + c (where c is a constant).

Answered by Ethan M. Maths tutor

2389 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation: x^4 + 2x -xy - y^3 - 10=0. Find dy/dx in terms of x and y.


Using the substitution u = 2 + √(2x + 1), or other suitable substitutions, find the exact value of 4 0 1 ∫ 2 (2 1) +√ +x dx giving your answer in the form A + 2ln B, where A is an integer and B is a positive constant


Find the area under the curve y = sin(2x) + cos(x) between 0 and pi/2


How do you prove the 1^2 +2^2+.....+n^2 = n/6 (n+1) (2n+1) by induction?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences