Integrate xsin(x) with respect to x

For this use integration by parts, letting the integral = T. Let u = x and dv/dx = sin(x). Differentiating u with respect to x gives du/dx = 1. Integrating dv/dx with respect to x gives v = - cos(x). Now, using the integration by parts formula, we get T = - xcos(x) - integral of (-cos(x)). Then, integrating this gives T = sin(x) - xcos(x) + c (where c is a constant).

Answered by Ethan M. Maths tutor

2513 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation x^2 + 3px + p = 0, where p is a non-zero constant, has equal roots. Find the value of p.


Find and equation to the curve y=3x^3+2x^2-1 at x = -1


Why is there more than one solution to x^2 = 4?


How would you work out the equation of the normal at a point (2,5) given the equation of a line?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences