Integrate xsin(x) with respect to x

For this use integration by parts, letting the integral = T. Let u = x and dv/dx = sin(x). Differentiating u with respect to x gives du/dx = 1. Integrating dv/dx with respect to x gives v = - cos(x). Now, using the integration by parts formula, we get T = - xcos(x) - integral of (-cos(x)). Then, integrating this gives T = sin(x) - xcos(x) + c (where c is a constant).

EM
Answered by Ethan M. Maths tutor

2886 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify 3log(x^2)+4log(y^3)


Differentiate y=x^2 from first principles


Two lines have equations r_1=(1,-1,2)+a(-1,3,4) and r_2=(c,-4,0)+b(0,3,2). If the lines intersect find c:


(x-4)^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning