Solve the simultaneous equations 5x + y = 21 and x- 3y = 9

There are different ways to approach solving a simultaneous equation question. For this one I recommend using substitution for this one where you insert one equation into the other.
First take the equation x - 3y = 9 . Rearrange that so you get x equal to something, in this case it would be x = 9 + 3y by adding the 3y to both sides. Now that we have a value for x we can put it into our other equation, 5x + y = 21, which becomes 5(9+3y) + y = 21. Now expand the bracket to get 45 +15y +y = 21 which is now an equation we can solve. Rearrange so we get all y values on one side of the equals and everything else on the other side: 16y (adding the 15y and y) = -24 (21 -45). We then divide by 16 to get a value for y which will be -1.5. Getting a value for x is a lot easier as we just substitute our y value into the first equation, x = 9+3y , becoming x = 9 + 3(-1.5). Therefore our x value will be 4.5.

Answered by George B. Maths tutor

2253 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and Simplify 3x(8y-2) - 4y(6x -3) + 2x = 0


How do I use the quadratic formula?


Factorise 15a^2 + ab - 6b^2


White paint costs £2.80 per litre. Blue paint costs £3.50 per litre. White paint and blue paint are mixed in the ratio 3 : 2 Work out the cost of 18 litres of the mixture.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences