Differentiate y=(4x^2-1)^3

When differentiating a composite function y = (4x2-1)3 , the chain rule needs to be used.
The chain rule is dy/dx= dy/du x du/dx
In this instance we need to assign u and y in order to differentiate and get the expression for dy/dx.
We can assign u to what is in the bracket. u = 4x2 -1 . Therefore y = u3So du/dx= 8x and dy/du = 3u2 When we substitute this back into the original chain rule, we get dy/dx = 3u2 x 8xWe already have the u, which is =4x2 -1
Therefore, putting this together gets dy/dx= 3(4x2 -1)2 x 8x = 24x(4x2-1)2.


Answered by Maths tutor

4771 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate Y = 4X/(X^2+5) and give dy/dx in its simplest form


Given that y = 5x^2 - 4/(x^3), x not equal to 0, find dy/dx.


How will you simplify (3 xsquare root of 2) to the square?


Find the first derivative of f(x). f(x) = ln(3x^2+2x+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning