Differentiate y=(4x^2-1)^3

When differentiating a composite function y = (4x2-1)3 , the chain rule needs to be used.
The chain rule is dy/dx= dy/du x du/dx
In this instance we need to assign u and y in order to differentiate and get the expression for dy/dx.
We can assign u to what is in the bracket. u = 4x2 -1 . Therefore y = u3So du/dx= 8x and dy/du = 3u2 When we substitute this back into the original chain rule, we get dy/dx = 3u2 x 8xWe already have the u, which is =4x2 -1
Therefore, putting this together gets dy/dx= 3(4x2 -1)2 x 8x = 24x(4x2-1)2.


Related Maths A Level answers

All answers ▸

y = 2t^2, and x = 3t^3 - 2. Find dy/dx in terms of t.


How do I differentiate the trigonometric functions sin(x) and cos(x) ?


A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.


Find the coordinates of the stationary point of y = x^2 + x - 2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences