Differentiate y=(4x^2-1)^3

When differentiating a composite function y = (4x2-1)3 , the chain rule needs to be used.
The chain rule is dy/dx= dy/du x du/dx
In this instance we need to assign u and y in order to differentiate and get the expression for dy/dx.
We can assign u to what is in the bracket. u = 4x2 -1 . Therefore y = u3So du/dx= 8x and dy/du = 3u2 When we substitute this back into the original chain rule, we get dy/dx = 3u2 x 8xWe already have the u, which is =4x2 -1
Therefore, putting this together gets dy/dx= 3(4x2 -1)2 x 8x = 24x(4x2-1)2.


Answered by Maths tutor

4501 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find d^2y/dx^2 for y=4x^4−3x^3−6x^2+x


How can I understand eigenvalues and eigenvectors?


Express (1 + 4 * 7^0.5)/(5 + 2 * 7^0.5) in the form m + n * 7^0.5


How do you use factor theorem to show an algebraic term is a factor of a polynomial?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning