Write down the value of 27^(-2/3)

We are trying to solve 27-2/3. Firstly, using the index rule axy= (ax)y, this can be rewritten as (271/3)-2. Lets tackle the value inside the bracket first: 271/3 means the cube root of 27, and so is 3 (as 33 = 27). Therefore we have 3-2. Any value to the power of a negative becomes one over that value. As a result, we have 1/(32) = 1/9

Answered by Matt L. Maths tutor

4896 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the significance of the number e (Euler's number)?


Solve x^2+6x+1=0 by completing the square


Solve the simultaneous equations: 2x-3y = 16 x+2y= -6


When using trigonometry to calculate side lengths/angles, how do you know which identity to use?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences