An ideal gas within a closed system undergoes an isothermal expansion from an initial volume of 1m^3 to 2m^3. Given that the initial pressure of the gas is 10^5 Pa, find the final pressure of the gas following the expansion.

The key word to note in this question is that the expansion is isothermal and that we have a closed system. This means that the expansion must happen at a constant temperature (isothermal), and that the number of particles doesn't change (closed system). For an ideal gas, we can write PV = NKT, however here we know that N (number of particles), K (Boltzmann's constant) and T (temperature) are all constant, and therefore PV = constant. This is known as Boyle's Law. In words, the product of pressure and volume must be constant at all times. This must therefore be true at the beginning and end of the expansion of the ideal gas, and so we can write PiVi = constant = PfVf , where the subscript i denotes the initial values and subscript f denotes the final values. We are after the final pressure Pf, and so by dividing both sides of the above equation by Vf, we get thatPf = (PiVi )/Vf = (105Pa X 1 m3)/2 m3 = 5 x 104 Pa. So the total pressure of the gas has halved due to the volume doubling.

Answered by James L. Physics tutor

2202 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why is 0°C ice more effective at cooling a drink than 0°C water of the same mass?


If an alpha particle (Z = 2) of kinetic energy 7 MeV is incident on a gold nucleus (Z = 79), what is its closest distance of approach?


What is the difference between linearly, directly and inversely proportional relationships?


How do you work out the work out the current through resistors in parallel?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences