An ideal gas within a closed system undergoes an isothermal expansion from an initial volume of 1m^3 to 2m^3. Given that the initial pressure of the gas is 10^5 Pa, find the final pressure of the gas following the expansion.

The key word to note in this question is that the expansion is isothermal and that we have a closed system. This means that the expansion must happen at a constant temperature (isothermal), and that the number of particles doesn't change (closed system). For an ideal gas, we can write PV = NKT, however here we know that N (number of particles), K (Boltzmann's constant) and T (temperature) are all constant, and therefore PV = constant. This is known as Boyle's Law. In words, the product of pressure and volume must be constant at all times. This must therefore be true at the beginning and end of the expansion of the ideal gas, and so we can write PiVi = constant = PfVf , where the subscript i denotes the initial values and subscript f denotes the final values. We are after the final pressure Pf, and so by dividing both sides of the above equation by Vf, we get thatPf = (PiVi )/Vf = (105Pa X 1 m3)/2 m3 = 5 x 104 Pa. So the total pressure of the gas has halved due to the volume doubling.

Answered by James L. Physics tutor

1787 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the main evidence for the Big Bang theory?


What is natural frequency and how is it associated with resonance?


An object with weight w is suspended from two strings at angles θ1 and θ2 to the vertical and with tensions T1 and T2. How would you resolve the vertical and horizontal forces?


What is gravitational potential and how can gravitational potential energy be used to estimate the escape velocity of a planet of mass m and radius r?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences