Determine the first derivative of the following curve defined by parametric equations x = 20-5t and y = t^5.

First remember that a parametric curve z = (x(t), y(t)) can be differentiated using the following formula (derived using the chain rule): dz/dt = (dy/dt)/(dx/dt). We should now find dy/dt and dx/dt (which are immediate)dx/dt = -5; dy/dt = 5t^4and it follows (using the formula above) that the desired derivative is dz/dt = (5t^4)/(-5) = -t^4

FC
Answered by Federico C. Maths tutor

2284 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I invert a 2x2 square matrix?


The curve with the equation: y=x^2 - 32sqrt(x) + 20 has a stationary point P. Find the coordinates of P.


Find the exact value of x from the equation 3^x * e^4x = e^7


The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences