Determine the first derivative of the following curve defined by parametric equations x = 20-5t and y = t^5.

First remember that a parametric curve z = (x(t), y(t)) can be differentiated using the following formula (derived using the chain rule): dz/dt = (dy/dt)/(dx/dt). We should now find dy/dt and dx/dt (which are immediate)dx/dt = -5; dy/dt = 5t^4and it follows (using the formula above) that the desired derivative is dz/dt = (5t^4)/(-5) = -t^4

Answered by Federico C. Maths tutor

2138 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Factorise completely x-4x^3


How do I find the maxima and minima of a function?


Find the range of values of k for which x²+kx-3k<5 for some x, i.e. the curve y=x²+kx-3k goes below y=5


Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences