Why does ln(x) differentiate to 1/x ?

At first glance, this may seem quite complicated. However, it is simple once you make use of exponents. 
Let y=ln(x)
This can be written as: e= eln(x)
e to the power of a natural log cancels out, which gives: 
ey=x
Differentiating both sides with respect to x gives:
ey (dy/dx)=1 
[This uses implicit differentiation. Remember that you must multiply ey by dy/dx as there isn't an x on that side]
Substituting in ey=x gives:
x (dy/dx) =1
And so dy/dx = 1/x

Answered by Charlie E. Maths tutor

13166 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you sketch r=theta? I don't really understand polar coordinates.


Edexcel January 2007 - Question 4 (Rates and Differential Equations)


A curve has the equation y = (1/3)x^3 + 4x^2 + 12x +3. Find the coordinates of each turning point and determine their nature.


Integrate ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences