Find the area under the curve y=xsin(x), between the limits x=-pi/2 and x=pi/2.

We are going to need to use integration for this problem as it involves finding an area under a curve. Also notice that y is a product of two functions of x ; x and sin(x). This means in this particular case the method of integration by parts will be needed. Firstly, we need to indentify which parts of the function y corresspond to the different components of the intergration by parts formula. Then coresspondingly subsistute them into the formula.Once this is completed it becomes a simple case of integrating the function cos(x) between the two limits in the question giving an answer of 2.

Answered by Oakley Y. Maths tutor

2486 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.


The gradient of a curve is given by dy/dx = 6sqrt(x) + 2. The curve passes through the point (16, 38). Find the equation of the curve.


The quadratic equation 2x^2 + 8x + 1 = 0 has roots a and b. Write down the value of a + b, a*b and a^2 + b^2.


Integrate the following between 0 and 1: (x + 2)^3 dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences