Find the area under the curve y=xsin(x), between the limits x=-pi/2 and x=pi/2.

We are going to need to use integration for this problem as it involves finding an area under a curve. Also notice that y is a product of two functions of x ; x and sin(x). This means in this particular case the method of integration by parts will be needed. Firstly, we need to indentify which parts of the function y corresspond to the different components of the intergration by parts formula. Then coresspondingly subsistute them into the formula.Once this is completed it becomes a simple case of integrating the function cos(x) between the two limits in the question giving an answer of 2.

OY
Answered by Oakley Y. Maths tutor

2761 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the difference between a scalar and vector quantity?


What is ln(10)-ln(5)?


Using the Trapezium rule with four ordinates (three strips), estimate to 4 significant figures the integral from 1 to 4 of (x^3+12)/4sqrt(x). Calculate the exact value of this integral, comparing it with your estimate. How could the estimate be improved?


Given that y = 4x^3 – 5/(x^2) , x =/= 0, find in its simplest form dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning