Find the area under the curve y=xsin(x), between the limits x=-pi/2 and x=pi/2.

We are going to need to use integration for this problem as it involves finding an area under a curve. Also notice that y is a product of two functions of x ; x and sin(x). This means in this particular case the method of integration by parts will be needed. Firstly, we need to indentify which parts of the function y corresspond to the different components of the intergration by parts formula. Then coresspondingly subsistute them into the formula.Once this is completed it becomes a simple case of integrating the function cos(x) between the two limits in the question giving an answer of 2.

Answered by Oakley Y. Maths tutor

2390 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is integration?


What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


The curve C has the equation: 2(x^2)y + 2x + 4y – cos (πy) = 17 use implicit differentiation to find dy/dx in terms of x and y


given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences