Find the area under the curve y=xsin(x), between the limits x=-pi/2 and x=pi/2.

We are going to need to use integration for this problem as it involves finding an area under a curve. Also notice that y is a product of two functions of x ; x and sin(x). This means in this particular case the method of integration by parts will be needed. Firstly, we need to indentify which parts of the function y corresspond to the different components of the intergration by parts formula. Then coresspondingly subsistute them into the formula.Once this is completed it becomes a simple case of integrating the function cos(x) between the two limits in the question giving an answer of 2.

OY
Answered by Oakley Y. Maths tutor

2494 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How does a hypothesis test work?


The curve with the equation: y=x^2 - 32sqrt(x) + 20 has a stationary point P. Find the coordinates of P.


Explain how Differentiation by the chain rule works


Solve the simultaneous equations, 2x+y-5=0 and x^2-y^2=3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences