Show that the matrix A is non-singular for all real values of a

Given: A = [a -5; 2 a+4]. 1) First find the determinant of A using the known formula => det A = a2+ 4a + 10. A singular matrix is one in which it's determinant equals zero (the determinant of a matrix is a number that captures information about the characteristics of the matrix). The roots of the quadratic are complex, so the graph never equals zero/ no real roots. Therefore it must be a non-singular matrix.

Related Further Mathematics A Level answers

All answers ▸

write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions


Differentiate: y=x^x


Integrate ln(x) with respect to x.


By forming and solving a suitable quadratic equation, find the solutions of the equation: 3cos(2A)-5cos(A)+2=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences