Show that the matrix A is non-singular for all real values of a

Given: A = [a -5; 2 a+4]. 1) First find the determinant of A using the known formula => det A = a2+ 4a + 10. A singular matrix is one in which it's determinant equals zero (the determinant of a matrix is a number that captures information about the characteristics of the matrix). The roots of the quadratic are complex, so the graph never equals zero/ no real roots. Therefore it must be a non-singular matrix.

Answered by Further Mathematics tutor

7958 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.


A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


How do you prove by induction?


Given that α= 1+3i is a root of the equation z^3 - pz^2 + 18z - q = 0 where p and q are real, find the other roots, then p and q.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning