How do I find the area bounded by the curve y=-x^2+4 and the line y=-x+2?

First sketch the line and the curve on the same axes (I would show this using the whiteboard).Then we want to find the points of intersection so set the two equations equal to each other and rearrange to get the equation x^2-x-2=0. If we solve this for x and substitute the values of x back into one of the equations we find that the points of intersection are at (-1,3) and (2,0). Then to find the area under the curve we can integrate -x2+4 between x=-1 and x=2 to get 9 units squared. But this is not the area we want as it includes the area under the line. So we need to subtract the area under the line between x=-1 and x=2. From the sketch this is the same as subtracting the area of the triangle with vertices at (-1,3),(-1,0) and (2,0) which equals 9/2. So the final solution is 9-9/2 = 9/2 units squared.

SH
Answered by Sarah H. Maths tutor

3320 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the integral: int(x^3+4x^2+sinx)dx.


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0 (a) Find (i) dy/d x (ii) d^2y/dx^2 (b) Verify that C has a stationary point when x = 4 (c) Determine the nature of this stationary point, giving a reason for your answer.


The region below the curve y = e^x + e^(-x) and the lines x = 0, x = ln4 is rotated 2π radians about the x-axis. Find the volume of the resulting solid.


FP2 (old specification) - How do you find the derivative of arsinhx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning