How do I find the area bounded by the curve y=-x^2+4 and the line y=-x+2?

First sketch the line and the curve on the same axes (I would show this using the whiteboard).Then we want to find the points of intersection so set the two equations equal to each other and rearrange to get the equation x^2-x-2=0. If we solve this for x and substitute the values of x back into one of the equations we find that the points of intersection are at (-1,3) and (2,0). Then to find the area under the curve we can integrate -x2+4 between x=-1 and x=2 to get 9 units squared. But this is not the area we want as it includes the area under the line. So we need to subtract the area under the line between x=-1 and x=2. From the sketch this is the same as subtracting the area of the triangle with vertices at (-1,3),(-1,0) and (2,0) which equals 9/2. So the final solution is 9-9/2 = 9/2 units squared.

Answered by Sarah H. Maths tutor

2735 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1


What is exactly differentiation?


How would you differentiate 3x^4 - 2x^2 + 9x - 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences