Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants

Given a ODE of the 2nd order, Ay''+by'+cy = 0, we assume the general solution of the exponential form y=e^(mx).As we will see this leads to an easy simplification due to the properties of the exponential . From this we substitute in and we get Am^(2)(e^mx) +bm(e^mx) + c(e^mx) = 0 here we have a like term of e^mx and thus can be eliminated leaving a quadratic of the form Am^2 + Bm + C = 0 where for a particular ODE we can solve quadratically and will have two values of m for a well-defined solution of the ODE.

Answered by William P. Maths tutor

2269 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If I am given a line, how do I find a line that is parallel to it? What about perpendicular?


Find the general solution of the differential equation: d^2x/dt^2 + 5dx/dt + 6x = 2cos(t) - sin(t)


Find the stationary points on y = x^3 + 3x^2 + 4 and identify whether these are maximum or minimum points.


Find the integral of (x+4)/x(2-x) .dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences