Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants

Given a ODE of the 2nd order, Ay''+by'+cy = 0, we assume the general solution of the exponential form y=e^(mx).As we will see this leads to an easy simplification due to the properties of the exponential . From this we substitute in and we get Am^(2)(e^mx) +bm(e^mx) + c(e^mx) = 0 here we have a like term of e^mx and thus can be eliminated leaving a quadratic of the form Am^2 + Bm + C = 0 where for a particular ODE we can solve quadratically and will have two values of m for a well-defined solution of the ODE.

WP
Answered by William P. Maths tutor

2734 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 3x + 5y = 7, find; a) the gradient of AB b) the x-axis and y-axis intercepts c) sketch the graph


How do I find a stationary point on the curve?


Find the roots of this equation: y=(8-x)lnx


Find the equation of the straight line perpendicular to 3x+5y+6=0 that passes through (3,4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning