How do I determine if a stationary point on a curve is the maximum or minimum?

If you are comfortable with differentiation. You can take the second derviatve of the equation of the cruve and plug in the x value of the curve. Based on this answer you can determine if it's a maximum, minimum or stationary. A maximum would have a negative value, a minimum a positive and stationary 0. If however you are not comfortable with this method and cannot memorize the different cases you can always substitute a point slightly before and after the point you're interested in. For example if you're considering x =3. You can subsitute 2.5 and 3.5 into your derivative and based on the signs draw a diagram representing the shape of the curve.

ES
Answered by Eryk S. Further Mathematics tutor

2391 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The equation of a curve is y = x^2 - 5x. Work out dy/dx


f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.


find the stationary point of the curve for the equation y=x^2 + 3x + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning