How do I determine if a stationary point on a curve is the maximum or minimum?

If you are comfortable with differentiation. You can take the second derviatve of the equation of the cruve and plug in the x value of the curve. Based on this answer you can determine if it's a maximum, minimum or stationary. A maximum would have a negative value, a minimum a positive and stationary 0. If however you are not comfortable with this method and cannot memorize the different cases you can always substitute a point slightly before and after the point you're interested in. For example if you're considering x =3. You can subsitute 2.5 and 3.5 into your derivative and based on the signs draw a diagram representing the shape of the curve.

Related Further Mathematics GCSE answers

All answers ▸

How can a system of two linear equations be solved?


A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


The function f is given by f(x) = SQRT(2x − 5). Work out x when f(x) = 1.2


Using differentiation, show that f(x) = 2x^3 - 12x^2 + 25x - 11 is an increasing function.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences