Prove that (root)2 is irrational

The part of syllabus covered by this question is proof by contradiction. Consequently, in order to achieve a contradiction, you can assume that root2 is rational and thus expressed as a/b where a and b are co-prime (have no common factors). By squaring both sides you get( 2=a^2/b^2). Multiply both sides by b^2 to get 2b^2=a^2. By definition of an even integer, we know a^2 is an even integer as it has a factor of 2. If a^2 is even, we know a is even as (even x even = even). If a is even, we can re-write this integer as 2k. Since a=2k we now know that 2b^2= (2k)^2= 4k^2. Therefore by simplification we deduce that b^2=2k^2. From the same process we applied to a^2, we can deduce that b is also even. If a and b are both even, then our initial statement that a/b has no common factors is a contradiction as a and b both have common factors of 2. Hence concludes our proof that root2 is irrational.

WT
Answered by Wynn T. Maths tutor

5291 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation x^2 +2xy–3y^2 +16=0. Find the coordinates of the points on the curve where dy/dx = 0.


y = x*(x-2)^-1/2. Prove dy\dx = (x-4)/2*(x-2)^3/2


Find d^2y/dx^2 for y=4x^4−3x^3−6x^2+x


If x = cot(y) what is dy/dx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences