Prove that (root)2 is irrational

The part of syllabus covered by this question is proof by contradiction. Consequently, in order to achieve a contradiction, you can assume that root2 is rational and thus expressed as a/b where a and b are co-prime (have no common factors). By squaring both sides you get( 2=a^2/b^2). Multiply both sides by b^2 to get 2b^2=a^2. By definition of an even integer, we know a^2 is an even integer as it has a factor of 2. If a^2 is even, we know a is even as (even x even = even). If a is even, we can re-write this integer as 2k. Since a=2k we now know that 2b^2= (2k)^2= 4k^2. Therefore by simplification we deduce that b^2=2k^2. From the same process we applied to a^2, we can deduce that b is also even. If a and b are both even, then our initial statement that a/b has no common factors is a contradiction as a and b both have common factors of 2. Hence concludes our proof that root2 is irrational.

Answered by Wynn T. Maths tutor

4239 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following expression with respect to x by parts: (2*x)*sin(x)


How do you find the point of intersection of two vector lines?


2(x^2)y + 2x + 4y – cos (PI*y) = 17. Find dy/dx using implicit differentiation.


(i) Find the coordinates of the stationary point on the curve y = 3x^2 − 6/x − 2. [5] (ii) Determine whether the stationary point is a maximum point or a minimum point.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences