Prove that n is a prime number greater than 5 then n^4 has final digit 1

Last digit of n determines last digit of n^4. All even numbers divide by 2, so are not prime. Any number ending in 5 is a multiple of 5 so is not prime. Primes > 5 end in 1, 3, 7 or 9. If n ends in 1, 1^4 is 1 so n^4 ends in a 1. If n ends in 3, 3^4 is 81 so n^4 ends in a 1. If n ends in 7, 7^4 is 2401 so n^4 ends in a 1. If n ends in 9, 9 4 is 6561 so n^4 ends in a 1. Statement proved by exhaustion 

Answered by Aristomenis-Dionysios P. Maths tutor

9337 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

curve C with parametric equations x = 4 tan(t), y=5*3^(1/2)*sin(2t). Point P lies on C with coordinates (4*3^(1/2), 15/2). Find the exact value of dy/dx at the point P.


How do I find the inverse of a 2x2 matrix?


Differentate sin(x^2+1) with respect to x


Let f(x) = x^3 -2x^2-29x-42. a)Show (x+2) is a factor b)Factorise f(x) completely


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences