Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .

The tangent to the curve is a straight line and will hence have the form f(x) = m * x + c, where m is the gradient of the tangent line and c is the y-intercept of the tangent line.
The gradient of the tangent to the curve y = exp(x) at point ( a, exp(a) ) may be found by differentiating the curve and evaluating the derivative at point ( a, exp(a) ). Therefore m = dy/dx at x=a = exp(a) .
The equation of the tangent line is now f(x) = exp(a) * x + c, where c is still unknown. We know the tangent line passes through the point ( a, exp(a) ), so substituting these values into the equation of the tangent line gives an expression for c : exp(a) = exp(a) * a + c => c = exp(a) * (1 - a).
The equation of the tangent line at a general point ( a, exp(a) ) is now: f(x) = exp(a) * x + exp(a) * (1-a) = exp(a) * (x + 1 - a) .
Now for the second part of the question, simply put in ( a,exp(a) ) = (0, 1) into our above equation. This gives: f(x) = 1 * (x + 1 - 0) => f(x) = x + 1 as our final answer.

CT
Answered by Cameron T. Further Mathematics tutor

1449 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

differentiate arsinh(cosx))


FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)


Why does matrix multiplication seem so unintuitive and weird?!


Prove that 27(23^n)+17(10^2n)+22n is divisible by 11 for n belongs to the natural numbers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences