How do I differentiate: (3x + 7)^2?

We can see that (3x + 7)2 is a 'composite function'. We can rewrite this as g(f(x)), where f(x) = 3x + 7 and g(x) = x2. As you will have learnt, you will need to use the chain rule for this type of differentiation. The chain rule is as follows: d/dx(g(f(x))) = d/d(f(x))(g(f(x)) * d/dx(f(x)). This problem can be broken down into 2 calculations. Let's work out each term individually:d/d(f(x))(g(f(x)):d/dx(g(x)) is simply 2x (bring the power down, reduce the power by one). Therefore we can substitute f(x) in as x in this equation which gives us d/d(f(x))(g(f(x)) = 2f(x) = 2*(3x + 7).d/dx(f(x)): We can see that this is 3 (from 3x, the constant 7 term disappears). Putting this all together gives our answer of:d/dx(g(f(x))) = d/d(f(x))(g(f(x)) * d/dx(f(x)) = (2*(3x + 7)) * 3 = 6*(3x + 7) = 18x + 42.

Answered by Lloyd K. Maths tutor

4062 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve C has equation x^2 - 3xy - 4y^2 + 64 = 0. a) find dy/dx in terms of x and y. b) find coordinates where dy/dx=0.


Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x


The weight in grams, of beans in a tin is normally distributed with mean U and S.D. 7.8, given that 10% conntain more than 225g a) Find U b) % of tins that contain more than 225 grams(A2 stats)


Find the coordinates of the point of intersection of the lines y = 5x - 2 and x + 3y = 8.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences