The Volume of a tin of radius r cm is given by V=pi*(40r-r^2-r^3). Find the positive value of r for which dV/dr=0 and find the value of V for this r.

Firstly differentiate the function V with respect to x (dV/dx)=pi*(40-2r-3r^2). Set dV/dr =0 and solve to find r. Divide both sides by pi and divide both side by -1 so that the r^2 term is positive (I personally find it easier to solve when the highest power coefficient is positive) (3r^2+2r-40=0). Factorise this expression ((3r-10)(r+4)=0). From this you can deduce the two values of x for which dV/dx=0 (r=10/3 and r =-4). Lastly substitute the positive value of r (10/3) into the expression for V (V=pi*(40-2(10/3)-3(10/3)^2)) = (2300*pi)/27.

Answered by Chorley K. Maths tutor

3724 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=3x^3+x^2+5 at the point (1,9)


A is a function of P . It is known that A is the sum of two parts, one part varies as P and the other part varies as the square of P . When P = 24 , A = 36 and when P = 18 , A = 9. Express A in terms of P .


If y = 1/(x^2) + 4x, find dy/dx


How do I find the points of intersection between two curves?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences