The Volume of a tin of radius r cm is given by V=pi*(40r-r^2-r^3). Find the positive value of r for which dV/dr=0 and find the value of V for this r.

Firstly differentiate the function V with respect to x (dV/dx)=pi*(40-2r-3r^2). Set dV/dr =0 and solve to find r. Divide both sides by pi and divide both side by -1 so that the r^2 term is positive (I personally find it easier to solve when the highest power coefficient is positive) (3r^2+2r-40=0). Factorise this expression ((3r-10)(r+4)=0). From this you can deduce the two values of x for which dV/dx=0 (r=10/3 and r =-4). Lastly substitute the positive value of r (10/3) into the expression for V (V=pi*(40-2(10/3)-3(10/3)^2)) = (2300*pi)/27.

CK
Answered by Chorley K. Maths tutor

4321 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that 1/(tanx) + tanx = 1/sinxcosx


The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


The normal to the curve C when x=1 intersects the curve at point P. If C is given by f(x)=2x^2+5x-3, find the coordinates of P


How do you differentiate X to the power of a?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences