For a graph C with equation y=3/(5-3x)^2, find the the equation of the line normal to the graph at point P, where x=2. Give your answer in the form ax+by+c=0

Find out the value of the y coordinate where x=2y=3/(5-3(2))^2=3Differentiate function in order to find the gradient of the graph at point Py=3/(5-3x)^-2Use chain rule where u=5-3xdu/dx=-3dy/dx=3u^-2Hence dy/dx=-6u^-3*-3dy/dx=18(5-3x)^-3dy/dx at x=2 is 18(5-3*2)^-3=-18Take negative reciprocal of 18 to find gradient of line normal to graph-18-->1/18y-y1=m(x-x1)Substitute in valuesy-3=1/18(x-2)18y-54=x-218y-x-52=0-x+18y-52=0

Answered by Jazib I. Maths tutor

3654 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 2log2(x+15) -log2(x) = 6, show that x^2-34x+225=0


g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).


What does dy/dx represent?


Express the following in partial fractions: (1+2x^2)/(3x-2)(x-1)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences