Integrate, with respect to x, xCos3x

Integration by parts:
u = x u' = 1v' = Cos3x v = (Sin3x)/3 + c
So, ∫xCos3x= (XSin3x)/3 - ∫(Sin3x)/3 dx= (XSin3x)/3 - 1/3( - (Cos3x)/3) + c = (XSin3x)/3 + (Cos3x)/9 + c

Answered by Maths tutor

4112 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations x = 1 - cos(t), y = sin(t)sin(2t) for 0 <= t <= pi. Find the coordinates where the curve meets the x-axis.


We are given y=(x^2)+3x-5. Find the derivative of y in terms of x.


Show that the curve y =f(x) has exactly two turning points, where f(x)= x^3 - 3x^2 - 24x - 28


Evaluate the indefinite integral when the integrand function is tan(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning