The charge that flows through the shower in 300 seconds is 18000C. The electric shower has a power of 13.8 kW. Calculate the resistance of the heating element in the shower.

Firstly, we want to define what information we know from the question: ∆Q = 18000C; ∆t = 300s, P = 13.8kW
Therefore, to calculate the resistance we can use the power equation, P=I2R, and calculate the current from: change in charge/change in time.
Current, I = ∆Q /∆t Substituting into this equation the known values: I = 18000/300 = 60A
Now, using the power equation: P = 13800 = (602)R Rearranging this to calculate resistance, R = 13800/3600 = 3.83 Ohms

Answered by Beth H. Physics tutor

6478 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Explain the process of nuclear fission.


State Newton's 1st Law:


Why does your hair stand on end when you touch a Van de Graaff generator?


If a car sets off from rest with a constant acceleration of 3 m/(s^2), what would its speed be after 5 seconds?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences