The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.

To factorise the equation, we first need to find one of its roots. To do this, we need to find values of x for which f(x)=0.First we will guess x=1.So f(1)=2(13) - 7(12) + 2(1) + 3 = 2-7+2+3=0This tells us that 1 is a root.By algebraic long division, we divide f(x) by x-1 to give f(x)=(x-1)(2x2-5x-3)By guessing again we find that f(3)=0. And by dividing 2x2-5x-3 by x-3 we get 2x2-5x-3 = (x-3)(2x-1).This gives us f(x)=(x-1)(x-3)(2x-1)

Answered by Maths tutor

3718 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given two coordinate points (a1,b1) and (a2,b2), how do I find the equation of the straight line between them?


How do you factorise quadratic, cubic functions or even quartic functions?


Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta


Sketch the graph of x^2+y^2-6x-4y=23


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning