The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.

To factorise the equation, we first need to find one of its roots. To do this, we need to find values of x for which f(x)=0.First we will guess x=1.So f(1)=2(13) - 7(12) + 2(1) + 3 = 2-7+2+3=0This tells us that 1 is a root.By algebraic long division, we divide f(x) by x-1 to give f(x)=(x-1)(2x2-5x-3)By guessing again we find that f(3)=0. And by dividing 2x2-5x-3 by x-3 we get 2x2-5x-3 = (x-3)(2x-1).This gives us f(x)=(x-1)(x-3)(2x-1)

Answered by Maths tutor

3736 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate ln(x)?


The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.


Integrate y with respect to x, where y = cos(x)/[1+tan^2(x)]


Find the roots of x^3 + 4x^2 - 5x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning