Differentate sin(x^2+1) with respect to x

y = sin(x2+1) In general, the chain rule is: dy/dx = f(g(x)) = df/dg * dg/dx Applying this to y: dy/dx = d(sin(x2+1))/d(x2+1) * d(x2+1)/dx = cos(x2+1) * (2x) = 2xcos(x2+1)

Related Maths A Level answers

All answers ▸

Solve the following simultaneous equations: y-3x+2=0, y^2-x-6x^2=0


If f'(x)=3x(x - 1), find f(x)


What is the chain rule and how is it used?


Find the coordinates of the stationary point on the curve y=2x^2+3x+4=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences