Evaluate the following product of two complex numbers: (3+4i)*(2-5i)

Answer : 26-7iMethod : Expanding the brackets will result in the sum, 6 -15i + 8i - 20i2by assessing this you can see that you can evaluate -15i + 8i to be equal to -7i which is the imaginary part of the complex number, one bit of the real part comes from the product of the real parts of each of the complex numbers (2*3 = 6) but from the properties of the imaginary constant i, the remainder of the real part comes from the i2 term which of course evaluates to -1. Hence -20i2 is equal to 20 and the real part is then equal to 26. Therefore, the product is equal to 26-7i.

Related Further Mathematics A Level answers

All answers ▸

Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.


How do I know when I should be using the Poisson distribution?


How do you find the cube root of z = 1 + i?


Integrate cos(log(x)) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences