The curve C has equation y = 3x^4 – 8x^3 – 3 Find (i) dy/dx (ii) the co-ordinates of the stationary point(s)

i) dy/dx=12x^3-24x^2ii) the stationary points occur when dy/dx = 0 so we must find the solutions to 12x^3-24x^2=0.12x^3-24x^2= 12x^2(x-2)=0Therefore our stationary points are when 12x^2=0 ie x=0 and x-2=0 ie x=2.Substituting our x co-ordinates into the original equation, we get our co-ordinates out as (0,-3) and (2,-19)

Answered by Maths tutor

2824 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x. y(x) = e^(7x^2)


Find the derivative of f(x) = 2xe^x


Which Real values of x satisfy 3/ln(x) = ln(x) + 2?


Differentiate x^2 + y^2 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning