A ball is kicked off a cliff at a height of 20m above ground and an angle of 30 degree from the horizontal, it follows projectile motion and lands after a time t. Its velocity at the maximum height it reaches is 20m/s, how long does it take it to land?

This problem should be split into two parts, the time it takes the ball to reach its maximum point, and the time it takes it to fall to the ground from the maximum point.part 1) We can calculate the balls initial vertical velocity by using trig and applying the knowledge that at its maximum height, a projectiles vertical velocity is 0, giving us;tan(30) = Vy/20 which can be rearranged to find Vy (the initial velocity in the vertical direction)We can then use V = u +at, setting v to 0 and a to g to find the time it takes the ball to reach this maximum point, t1part 2) Next we have to find the time it takes the ball to drop down from the maximum point, we can work out how much higher the max point is above the height the ball was kicked from by using s = ut +(1/2)at^2, the total height the ball achieves is this distance s + 20m. We can then solve s + 20 = (1/2)at^2 for t to find t2.Finally we simply add the two times together to get the time for the whole journey of the ball.

PK
Answered by Patryk k. Physics tutor

3504 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do you explain why puddles evaporate on cold days ?


What happens to ice when energy is supplied at a constant rate in terms of the changes in energy of the molecules?


A passenger is standing in a train. The train accelerates and the passenger falls backwards. Use Newton's first law of motion to explain why he fell backwards.


A mass, m, is resting on a slope being slowly tilted upwards from horizontal. The static friction co-efficient is 0.3 and the dynamic friction co-efficient is 0.2: at what angle will the mass begin to slip?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning