Find the area contained under the curve y =3x^2 - x^3 between 0 and 3

Equation of curve is: y = y =3x2 - x3To find area need to integrate between 0 and 3So integrating each term gives x3 - x4/4 + cThen sub in the limits [(33 - 34/4) - (03 - 04/4)] = 27-81/4 = 27 - 20.25 = 6.75

Answered by Juan R. Maths tutor

2264 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

F ind all values of x in the range 0° <= x <= 180° satisfying tan(x+45°)= 8tan(x)


Find the stationary points of the equation. f(x)=3x^2+4x.


Use the quotient rule to differentiate: ln(3x)/(e^4x) with respect to x.


Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences