Find the area contained under the curve y =3x^2 - x^3 between 0 and 3

Equation of curve is: y = y =3x2 - x3To find area need to integrate between 0 and 3So integrating each term gives x3 - x4/4 + cThen sub in the limits [(33 - 34/4) - (03 - 04/4)] = 27-81/4 = 27 - 20.25 = 6.75

Answered by Juan R. Maths tutor

2261 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration by parts to find the value of the indefinite integral (1/x^3)lnx ; integration with respect to dx


How do I differentiate f(x) = cos(x)/x?


Express (x + 1)/((x^2)*(2x – 1)) in partial fractions


A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences