The second and fourth term of a geometric series is 100 and 225 respectively. Find the common ratio and first term of the series. Round your answer to 2 d.p if necessary

Formula for a Geometric series for term n = arn , where a = the first term and r = common ratio.Therefore, with the information given we can write that ar2 = 100 and ar4 = 225 , where a and r are the constants we're trying to find
By dividing these two equations together we get that ar4 / ar2 = 225 / 100this can then be simplified to r2 = 2.25, which can be square rooted to show that r = 1.5
After working this out, when can sub r=1.5 back into one of the equations for the two terms given, for example ar2 = 100, to get that a(1.5)2 = 100 by dividing by 1.52 on both sides we can show that a = 44.44 to 2 d.p

Related Maths A Level answers

All answers ▸

How can I derive an equation to find the sum of an arithmetic sequence?


Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3


Find the coordinates of the turning points of the curve y = 4/3 x^3 + 3x^2-4x+1


Find the stationary point of y=3x^2-12x+29 and classify it as a maximum/minimum


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences