A function is defined by f(x)= e^(x^2+4), all real x. Find inverse of f(x) and its domain.

Let f(x)=y: y = e^(x2+4); To find the inverse of a function, you need to find x in terms of y. In this case, you need to bring the exponent to the base. So in order to bring x2+4 from the power, take natural log of both sides so: ln(y) = ln(e^(x2+4)); ln(e^(a)) = a, where a is some function. This means that: ln(y) = x2+4; Now that x is a base, the algebra becomes simple. Isolate x; x2 = ln(y) - 4; Simplify; x = sqrt(ln(y) - 4); This is the inverse. However, to use the same terms as the original function let x = y and y = x, so; y = sqrt(ln(x)-4).

Answered by Elisa C. Maths tutor

2306 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)


How do you differentiate using the chain rule?


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


A curve has the equation y=3x^3 - 7x^2+52. Find the area under the curve between x=2 and the y-axis.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences