A curve has the equation (5-4x)/(1+x)

Start by looking for intercepts.x=0, y= 5. Therefore the curve crosses the y axis at y=5y=0, x= 5/4these are the only two intercepts. Now look for asymptotes.3. at x= 1, y becomes undefined, looking at either side of x= 1. As x tends towards 1 from the positive direction y tends towards positive infinity. As x tends towards 1 from the negative direction, y tends towards negative infinity.4. As x tends towards infinity we can split out the equation. y= 5/(1+x) - 4x/(1+x). As x grows larger, y 5/(1+) becomes smaller, and -4x/(1+x) tends towards -4x/x = -4. Therefore as x tends towards infinity, y tends towards -4. Together this permits us to draw out the sketch of the equation.

Related Further Mathematics A Level answers

All answers ▸

Does the following matrix A = (2 2 // 3 9) (upper row then lower row) have an inverse? If the matrix A^2 is applied as a transformation to a triangle T, by what factor will the area of the triangle change under the transformation?


Given the equation x^3-12x^2+ax-48=0 has roots p, 2p and 3p, find p and a.


How do you solve, dy/dx=(x^2+y^2)/xy?


Solve the inequality x/(x+2) ≤ 4/(x-3) for x ≠ -2 or 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences