Express cos(2x) in the form acos^2(x) + b, where a and b are constants.

we first remember the double angle formula, a really important formula. cos(2x) = cos2(x) - sin2(x).We know that sin2(x) + cos2(x) = 1, therefore, cos(2x) = cos2(x) + cos2(x) - 1. Giving our final answer to be, cos(2x) = 2cos2(x) - 1.

Answered by Jack P. Maths tutor

5154 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u=3+(x+4)^1/2 to find the integral of 1/(3+(x+4)^1/2) dx between 0 and 5.


I don’t think I’m smart enough for this course, should I drop it?


Given that y=(4x+1)^3sin 2x , find dy/dx .


Describe the set of transformations that will transformthe curve y=x^ to the curve y=x^2 + 4x - 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences