Express cos(2x) in the form acos^2(x) + b, where a and b are constants.

we first remember the double angle formula, a really important formula. cos(2x) = cos2(x) - sin2(x).We know that sin2(x) + cos2(x) = 1, therefore, cos(2x) = cos2(x) + cos2(x) - 1. Giving our final answer to be, cos(2x) = 2cos2(x) - 1.

Answered by Jack P. Maths tutor

4640 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that the binomial expansion of (1+kx)^n begins 1+8x+16x^2+... a) find k and n b) for what x is this expansion valid?


What is the integral of x^(3)e^(x) with respect to x?


Derive the quadratic formula. From it, write down the determinant and explain, how is it related to the roots of a quadratic equation.


Integrate 5(x + 2)/(x + 1)(x + 6) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences