Determine the nature of the roots of the quadratic equation x^2 + 6x + 8 = 0, and plot the graph of this function.

The graph has two distinct real roots (x=-4 and x = -2), which we can see by factorising the equation, which gives (x+4)(x+2) = 0. We can then plot the function y = x^2 + 6x + 8, first marking the roots on the y-axis, then the y-intercept (0,8), and drawing the graph from there.

DL
Answered by Daniel L. Maths tutor

3143 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve a simple simultaneous equation?


Draw the graph y=4x+2


Give an example of a real-world system that would be described by a quadratic equation. Explain the significance of the two real roots, a repeated root, and undefined roots. Is there any significance to a positive or a negative answer in your example?


By completing the square, find the solutions of x which satisfy the equation x^2+14x-1=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning