In a triangle ABC, side AB=10 cm, side AC=5cm and the angle BAC=θ, measured in degrees. The area of triangle ABC is 15cm(sq). Find 2 possible values for cosθ and the exact length of BC, given that it is the longest side of the triangle.

To find cosθ, use the formula for the area of a triangle i.e. AREA=1/2 x a x b x sinC.=> For this case: 15= 1/2 x 10 x 5 x sinC to find sinC.=> SinC = 3/5 thus, Arcsin(3/5)=+- 4/5 or +-0.8
To find the exact length of BC, use the cosine rule.=> c(sq)=a(sq)+b(sq)-2abCosC=> c(sq)=10(sq)+5(sq)-2(10)(5)(+-4/5)=> c(sq)= Square root of 205

Related Maths A Level answers

All answers ▸

Differentiate the function f(x) = 3x^2/sin(2x)


Solve the complex equation z^3 + 32 + 32i(sqrt(3)) = 0


Complete the indefinite integral of 3x^2 + 4x -2/(x^2)


Find the integral of y= e^3x / 1+e^x using calculus.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences