For 100ml of a liquid with a mass density of 1(kg m^-3), and a specific heat capacity of 2(kJ kg^-1 K^-1), how much energy is required to increase the temperature of the liquid by 4 degrees celsius. Assume no heat loss and that the liquid does not boil.

The key equation to this question is the energy transfer equation of Q = mcT. Q represents the amount of energy put into the system, m is the mass of the object we're talking about in kg, c is its specific heat capacity, and T is the change in temperature of the object in degrees celsius. The specific heat capacity can be thought of as how much energy is required to increase 1kg of an object by 1 degree celsius. Now to solve this equation. We don't know the mass of the liquid but we can find it out by multiplying its volume by its density, and so then putting this and the other provided information into the equation we get: Q = (0.1*1)20004 = 800J. Notice how I used 2000 in this equation, not 2, as the specific heat capacity was given in terms of kJ and the answer was in J.

Answered by Henry W. Physics tutor

1186 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe and explain the vertical motion of a parachutist which jumps out of an aeroplane at time t=0 and then releases the parachute shortly after reaching terminal velocity at time t=T. (Assume air resistance is not negligible).


How does light from distant stars show how fast they are moving away from us.


The flow of water in a pipe is turbulent. Define turbulent flow.


A stationary radium atom decays, emiting an alpha particle. Why is the recoil speed of the nucleus small compared to the alpha particle?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences