For 100ml of a liquid with a mass density of 1(kg m^-3), and a specific heat capacity of 2(kJ kg^-1 K^-1), how much energy is required to increase the temperature of the liquid by 4 degrees celsius. Assume no heat loss and that the liquid does not boil.

The key equation to this question is the energy transfer equation of Q = mcT. Q represents the amount of energy put into the system, m is the mass of the object we're talking about in kg, c is its specific heat capacity, and T is the change in temperature of the object in degrees celsius. The specific heat capacity can be thought of as how much energy is required to increase 1kg of an object by 1 degree celsius. Now to solve this equation. We don't know the mass of the liquid but we can find it out by multiplying its volume by its density, and so then putting this and the other provided information into the equation we get: Q = (0.1*1)20004 = 800J. Notice how I used 2000 in this equation, not 2, as the specific heat capacity was given in terms of kJ and the answer was in J.

HW
Answered by Henry W. Physics tutor

2033 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do I find an area in m^2 when I'm given lengths in cm?


Find current and voltage across resistors R1 and R2, when they connected in parallel and in series. A 12V battery is connected, R1=4Ω and R2=3Ω.


A trolley of mass 0.75kg is running along a frictionless track at a constant speed of 0.7ms-1, as the trolley passes below a mass of 0.5kg the mass drops a short vertical distance onto the trolley. Calculate the new velocity of the trolley and mass.


A cup of tea contains 175 g of water at a temperature of 85.0 °C. Milk at a temperature of 4.5 °C is added to the tea and the temperature of the mixture becomes 74.0 °C. What is the internal energy lost by the water? What is the mass of the milk?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning