For 100ml of a liquid with a mass density of 1(kg m^-3), and a specific heat capacity of 2(kJ kg^-1 K^-1), how much energy is required to increase the temperature of the liquid by 4 degrees celsius. Assume no heat loss and that the liquid does not boil.

The key equation to this question is the energy transfer equation of Q = mcT. Q represents the amount of energy put into the system, m is the mass of the object we're talking about in kg, c is its specific heat capacity, and T is the change in temperature of the object in degrees celsius. The specific heat capacity can be thought of as how much energy is required to increase 1kg of an object by 1 degree celsius. Now to solve this equation. We don't know the mass of the liquid but we can find it out by multiplying its volume by its density, and so then putting this and the other provided information into the equation we get: Q = (0.1*1)20004 = 800J. Notice how I used 2000 in this equation, not 2, as the specific heat capacity was given in terms of kJ and the answer was in J.

HW
Answered by Henry W. Physics tutor

1611 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the Centripetal force, and how does it keep objects in circular motion?


Explain the photo-electric effect and how the particle theory of light explains the phenomena. State the equation used to the determine the kinetic energy of a photo-electron and explain the origin of the terms used in your equation.


What Newton’s third law of motion?


Two balls with the same kinetic energy have mass of ball a = m and ball b = 2m. What is the ratio of their momentums: a/b?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences