For 100ml of a liquid with a mass density of 1(kg m^-3), and a specific heat capacity of 2(kJ kg^-1 K^-1), how much energy is required to increase the temperature of the liquid by 4 degrees celsius. Assume no heat loss and that the liquid does not boil.

The key equation to this question is the energy transfer equation of Q = mcT. Q represents the amount of energy put into the system, m is the mass of the object we're talking about in kg, c is its specific heat capacity, and T is the change in temperature of the object in degrees celsius. The specific heat capacity can be thought of as how much energy is required to increase 1kg of an object by 1 degree celsius. Now to solve this equation. We don't know the mass of the liquid but we can find it out by multiplying its volume by its density, and so then putting this and the other provided information into the equation we get: Q = (0.1*1)20004 = 800J. Notice how I used 2000 in this equation, not 2, as the specific heat capacity was given in terms of kJ and the answer was in J.

HW
Answered by Henry W. Physics tutor

2183 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A car moves from rest and accelerates uniformly at 4m/s/s, how far will it have traveled after 10 seconds?


What is a moment?


Two pendulums consist of a massless rigid rod of equal length attached to a small sphere of equal radius, with one sphere hollow for one pendulum and the other solid. Each pendulum undergoes damped SHM. Which pendulum has the largest time period?


An ice cube with a small iron ball in its centre is placed in a cup of water. 3.9 x 10-3kg of water in the cup is displaced and the volume of the ice cube is 4.0 x 10-6m3. Ice density: 1000 kg m-3 Iron density: 7800 kg m-3, what is the volume of the iron?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning