Solve the following simultaneous equations: (1) 2y + x = 8, (2) 1 + y = 2x

The first aim is to obtain an expression for one of the unknowns in terms of the other. To achieve this, addition and subtraction methods are used. For example, using equation 1, subtracting 2y from both sides, gives x = 8 - 2y. This new expression is then substituted into the other equation (equation 2). This gives 1 + y = 2(8 - 2y), which when expanded gives 1 + y = 16 - 4y.Rearranging, again using addition and subtraction, gives 5y = 15. Dividing both sides by 5 gives y = 3. The next aim is to find the remaining unknown, x. This is done by substituting our known value of y into any of the original equations. E.g Using equation 2. 1 + 3 = 2x. Therefore giving 2x = 4, so x = 2. So we now have both of our unknowns. Just to be safe we could check our answer by back-substituting the answers into one of the equations. E.g. Using equation 1. 2(3) + 2 = 8, which is correct.

Answered by Benjamin J. Maths tutor

1877 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A = {multiples of 5 between 14 and 26}. B = {odd numbers between 14 and 26}. List the members of A∪B and A∩B.


simplify 36^(-1/2)


In a class there are 57 students. Of these 32 study Spanish, 40 study German and 12 students study neither. How many students study Spanish but not German?


A gardener uses this formula to work out how much he charges to make a lawn. C = 7(14 +A)/ 3. C is the charge in £. A is the area in m2. He makes a rectangular lawn measuring 12.5 m by 17.6 m. How much does he charge?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences