Two electrons are a distance r apart, the first electron exerts a force F on the second electron. a) What force does the second electron exert on the first? b) In terms of r, at what distance is the force that the first electron exerts on the second F/9?

This question is on electric forces between charged particles. A useful equation to consider is Coulomb's law:F=k(Q1Q2)/R2Where k is the Coulomb's law constant:k~9.0x109Nm2/C2Q is the charge on each particle in Coulombs, R is the distance in metres and F is the force in Newtons.a) This part is a simple application of Newton's third law, as the first electron is exerting a repulsive force F on the second, the second must also be exerting a repulsive force F on the first. (Every force has an equal and opposite reaction force!)b) This section requires you to look at Coulomb's law. It is what is known as an inverse square law, this effectively means the force decreases proportionally to the square of the distance, so for the force to have decreased by a factor of 9, the distance must have increased by a factor of the square root of nine, this equals 3, so the new distance is 3r. Nothing else in the equation changes, so they all other terms can be treated as constants and ignored.This can be seen more explicitly by mathematically manipulating Coulomb's law, however I find it easier and more useful to instead find the answer by just thinking about the underlying link between force and distance in this equation, this means you develop a proper understanding of the inverse square relationship.

RW
Answered by Ross W. Physics tutor

6279 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


Explain why gas bubbles rise faster through magma as they start to expand. (3)


If photons of wavelength 0.1nm are incident on a 2m x 2m Solar Panel at a rate of 2.51x10^15s^-1, calculate the intensity, I, of the photons on the Solar Panel.


Topic - force as rate of change of momentum; (i) force on a wall due to water from a hose, (ii) force on a table as a rope is dropped onto it.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences