What is the chain rule?

The chain rule is a technique used when differentiating. It is needed when differentiating composite functions, i.e. when y = f(g(x)).For example, y = sin(x^3) is a composite function, where (referring to the general formula above) f(x) = sin(x), g(x) = x^3.The general form of the chain rule is dy/dx = g'(x) x f'(g(x)), i.e. you differentiate the inside function then multiply it by the differential of the whole function.Using the example from above: y = sin(x^3) dy/dx = 3x^2 x cos(x^3)Reverse chain rule can be used to quickly integrate a function if it is spotted.For example, if you were given the function y = 3x^2 x cos(x^3) to integrate, you may just integrate by parts or you may spot that it will be sin(x^3), by reverse chain rule.

Answered by Maths tutor

2978 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y = 2sin(θ) and x = 3cos(θ) find dy/dx.


Calculate dy/dx for y=x(x−1)


Solve the differential equation dx/dt=-6*x , given when t=0 x=7.


(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning