f(x) = (x + 1)^2 and g(x) = 2(x - 1) Show that gf(x) = 2x(x + 2)

For this question, as we are looking for gf(x) so we first need to plug in our formula for f(x) into the g(x) formula, giving us:
2((x+1)^2 - 1)
We can then expand our squared bracket to get:
2(x^2 + 2x + 1 - 1)
We can see the +1 and -1 term now cancel out leaving us with:
2(x^2 + 2x)
And finally we take the common term from within the bracket to the outside (both terms share an x) to finish with:
2x(x + 2)

DM
Answered by Django M. Maths tutor

2871 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I factorise this expression? [Let’s say it’s x^2 + 5x + 6]


A semicircle has a diameter of 8cm, what it the area?


Solve the equation 2x^2 + 3x = 9


There are 6 orange sweets and n total sweets in a bag. The probability of picking two sweets one at a time randomly and both being orange is 1/3. Show that n^2 - n - 90 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning