f(x) = (x + 1)^2 and g(x) = 2(x - 1) Show that gf(x) = 2x(x + 2)

For this question, as we are looking for gf(x) so we first need to plug in our formula for f(x) into the g(x) formula, giving us:
2((x+1)^2 - 1)
We can then expand our squared bracket to get:
2(x^2 + 2x + 1 - 1)
We can see the +1 and -1 term now cancel out leaving us with:
2(x^2 + 2x)
And finally we take the common term from within the bracket to the outside (both terms share an x) to finish with:
2x(x + 2)

Answered by Django M. Maths tutor

2470 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Determine if the Following equality has real roots: (3*X^2) - (2*X) + 4 = (5*X^2) + (3*X) + 9, If the equation has real roots, calculate the roots for this equation.


2(y+3) = 10. What is y?


In a recent election, 42% of the voters were male. There were 400 more female voters than male voters. Assuming all voters are either male or female, how many voters were there overall?


Solve the quadratic 3x^2+11x+6=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences